题目内容

【题目】已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x﹣3)﹣b=7的解.

(1)求ab的值;

(2)若线段AB=a,在直线AB上取一点P,恰好使=b,点QPB的中点,请画出图形并求出线段AQ的长.

【答案】(1)a=8,b=3;(2)710.

【解析】试题分析:(1)根据同解方程,可得两个方程的解相同,根据第一个方程的解,可求出第二个方程中的b;
(2)分类讨论,P在线段AB上,根据 ,可求出PB的长,根据Q是PB线段PB的中点,可得PQ的长,根据线段的和差,可得AQ;P在线段AB的延长线上,根据,可求出PB的长,根据Q是PB线段PB的中点,可得BQ的长,根据线段的和差,可得AQ.

试题解析:

(1)2(a-2)=a+4,
2a-4=a+4
a=8,
∵x=a=8,
把x=8代入方程2(x-3)-b=7,
∴2(8-3)-b=7,
b=3;
(2)①如图:点P在线段AB上,

=3,
AB=3PB,AB=AP+PB=3PB+PB=4PB=8,
PB=2,Q是PB的中点,PQ=BQ=1,
AQ=AB-BQ=8-1=7,
②如图:点P在线段AB的延长线上,

=3,
PA=3PB,PA=AB+PB=3PB,
AB=2PB=8,
PB=4,
Q是PB的中点,BQ=PQ=2,
AQ=AB+BQ=8+2=10.

所以线段AQ的长是7或10.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网