题目内容

某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.

(1)求y2的解析式;
(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
(1) y2=x2﹣x+(1≤x≤12);(2) 第3月销售这种水果,每千克所获得利润最大,最大利润是元/千克.

试题分析:(1)把函数图象经过的点(3,6),(7,7)代入函数解析式,解方程组求出m、n的值,即可得解;
(2)根据图1求出每千克的售价y1与x的函数关系式,然后根据利润=售价﹣成本得到利润与x的函数关系式,然后整理成顶点式形式,再根据二次函数的最值问题解答即可.
试题解析:(1)由图可知,y2=mx2﹣8mx+n经过点(3,6),(7,7),

解得
∴y2=x2﹣x+(1≤x≤12);
(2)设y1=kx+b(k≠0),
由图可知,函数图象经过点(4,11),(8,10),

解得
所以,y1=﹣x+12,
所以,每千克所获得利润=(﹣x+12)﹣(x2﹣x+
=﹣x+12﹣x2+x﹣
=﹣x2+x+
=﹣(x2﹣6x+9)++
=﹣(x﹣3)2+
∵﹣<0,
∴当x=3时,所获得利润最大,为元.
答:第3月销售这种水果,每千克所获得利润最大,最大利润是元/千克.
【考点】二次函数的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网