题目内容

如图,双曲线(x>0)上有一点A(1,5),过点A的直线y=mx+n与x轴交于点C(6,0).

(1)求反比例函数和一次函数的解析式;
(2)连接OA、OB,求△AOB的面积;
(3)根据图象直接写出在第一象限内反比例函数值大于一次函数值时x的取值范围.
(1)y=﹣x+6  (2)12  (3)0<x<1或x>6

试题分析:(1)把A的代入反比例函数的解析式即可求出反比例函数的解析式,把A、C的坐标代入y=mx+n即可求出一次函数的解析式;
(2)求出B的坐标,根据三角形的面积公式求出即可;
(3)根据A、B的坐标结合图象即可得出答案.
解:(1)把A(1,5)代入y=得:=5,
∴反比例函数的解析式是y=
把A、C的坐标代入y=mx+n得:
解得:m=﹣1,n=6,
∴一次函数的解析式是y=﹣x+6;
(2)解方程组得:
∵A(1,5),
∴B(5,1),
∵C(6,0),
∴OC=6,
∴SAOB=SAOC﹣SBCO=×6×5﹣×6×1=12;
(3)在第一象限内反比例函数值大于一次函数值时x的取值范围是0<x<1或x>6.
点评:本题考查了一次函数和反比例函数的交点问题,用待定系数法求出反比例函数和一次函数的解析式等知识点的应用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网