题目内容
【题目】已知:∠MAN=60°,点B在射线AM上,AB=4(如图).P为直线AN上一动点,以BP为边作等边三角形BPQ(点B,P,Q按顺时针排列),O是△BPQ的外心.
(1)当点P在射线AN上运动时,求证:点O在∠MAN的平分线上;
(2)当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,设AP=x,AC﹒AO=y,求y关于x的函数解析式,并写出自变量的取值范围;
(3)若点D在射线AN上,AD=2,圆I为△ABD的内切圆.当△BPQ的边BP或BQ与圆I相切时,请直接写出点A与点O的距离.
【答案】 (1)详见解析;(2)y=4x,其中自变量的取值范围为x>0;(3))①当BP与圆I相切时,AO= ;②当BP与圆I相切时,AO=;③当BQ与圆I相切时,AO=0.
【解析】
(1)证O在∠MAN的平分线上,可证O到角两边的距离相等,分两种情况:①OB不与AM垂直,过O作OT⊥AN,OH⊥AM,可通过构建全等三角形来求解.连接OB,OP,则OB=OP,只需证明△OHB与△OTP全等即可.这两个三角形中,已知的条件有OB=OP,一组直角.只需再证得一组角对应相等即可,∠HOT和∠BOP都等于120°,因此∠BOH=∠TOP,则两三角形全等,OT=OH.由此得证;②当OB⊥AM时,由于OB=OP,只需证明OP⊥AN即可.由于∠BOP=120°,而∠ABO=90°,∠MAN=60°,根据四边形的内角和为360°,即可求得OP⊥AN,由此可得证;
(2)本题要通过相似三角形ACP和ABO来求解.这两个三角形中,已知了∠BAO=∠CAP(在1题中已经证得),只需再找出一组对应角相等即可,在△ACP和△OBC中,∠CAP=∠OBC=30°,∠ACP=∠BCO,因此∠APC=∠AOB,由此证得两三角形相似,可得出关于AB,AC,AO,AP的比例关系式,据此可求出y,x的函数关系式;
(3)本题分三种情况:
①圆I在△BPQ外,且与BP边相切,此时D、P重合,AD=AP=2,AB=4,∠MAN=60°,因此△ABP为直角三角形,不难得出△ABO也是直角三角形,因此可得出△ABO≌△APB,AO=BP=2;②圆I在△BPQ内,与BP,PQ边相切时,此时P与A重合,可在直角三角形ODA中,根据AD=2,∠DAO=30°,求得AO=;③圆I在△BPQ内,与BQ边相切时,A,O重合,因此AO=0.
(1)证明:如图1,连接OB,OP.
∵O是等边三角形BPQ的外心,∴圆心角∠BOP==120°.
当∠MAN=60°,不垂直于AM时,作OT⊥AN,则OB=OP.
由∠HOT+∠A+∠AHO+∠ATO=360°,且∠A=60°,∠AHO=∠ATO=90°,
∴∠HOT=120°,
∴∠BOH=∠POT,
∴Rt△BOH≌Rt△POT.
∴OH=OT,
∴点O在∠MAN的平分线上;
(2)如图2,
∵AO平分∠MAN,且∠MAN=60°,
∴∠BAO=∠PAO=30°,
由(1)知,OB=OP,∠BOP=120°,
∴∠CBO=30°,
∴∠CBO=∠PAC,
∵∠BCO=∠PCA,
∴∠AOB=∠APC,
∴△ABO∽△ACP,
∴,
∴AC﹒AO=AB﹒AP,
∴y=4x,其中自变量的取值范围为:x>0;
(3)①如图3,当BP与圆I相切时,AO=;
②如图4,当BP与圆I相切时,AO=;
③如图5,
当BQ与圆I相切时,AO=0.