题目内容
【题目】已知点O在△ABC内,且知OB和OC分别平分∠ABC和∠ACB,过O作直线EF分别交AB、AC于E、F.
(1)如图1,已知EF∥BC.
①若∠A=76°,请直接写出∠BOE+∠COF的度数;
②猜想∠BOE、∠COF与∠A之间有怎样的数量关系?写出结论,不用证明
(2)直线EF绕点O旋转到如图2的位置时(EF与BC不平行),那么上面(1)②中猜想的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
(3)当直线EF绕点O旋转到如图3的位置时(点E在AB的延长线上),请直接写出∠BOE、∠COF与∠A之间的数量关系.
【答案】(1)①52°;②∠BOE+∠COF=90°﹣∠A,理由见解析;(2)成立,理由见解析;(3)∠COF﹣∠BOE=90°﹣∠A
【解析】
(1)①根据平行线的性质和三角形内角和定理进行计算;
②用①中的方法进行推导,同样依据平行线的性质和三角形内角和定理得出角的关系;
(2)根据三角形内角和定理以及平角的性质即可证得∠BOE+∠COF=90°-∠A;
(3)根据三角形内角和定理以及平角的定义即可证得∠COF-∠BOE=90°-∠A.
(1)①如图1,∵EF∥BC,
∴∠BOE=∠1,∠COF=∠2,
∵OB、OC分别平分∠ABC和∠ACB,
∴∠1=∠ABC,∠2=∠ACB
∴∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BOE+∠COF=∠1+∠2=90°﹣∠A=90°﹣=52°;
②猜想∠BOE+∠COF=90°﹣∠A,
证明:∵EF∥BC,
∴∠BOE=∠1,∠COF=∠2,
∵OB、OC分别平分∠ABC和∠ACB,
∴∠1=∠ABC,∠2=∠ACB
∴∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BOE+∠COF=∠1+∠2=90°﹣∠A;
(2)成立.
证明:如图2,∵OB、OC分别平分∠ABC和∠ACB,
∴∠1=∠ABC,∠2=∠ACB,
∴∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A
∵∠BOE+∠COF+∠3=∠1+∠2+∠3=180°
∴∠BOE+∠COF=∠1+∠2=90°﹣∠A;
(3)解:如图3,∵OB、OC分别平分∠ABC和∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠BOC=180°﹣∠ABC+∠ACB=180°﹣(∠ABC+∠ACB)=(180°﹣∠A)=90°+∠A,
∵∠BOC﹣∠BOE+∠COF=180°,
∴∠COF﹣∠BOE=180°﹣∠BOC=180°﹣(90°+∠A)=90°﹣∠A;
【题目】车间有20名工人,某天他们生产的零件个数统计如下表.
车间20名工人某一天生产的零件个数统计表
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?