题目内容
【题目】小李和小陆从 A 地出发,骑自行车沿同一条路行驶到 B 地,他们离出发地的距离 s和行驶时间t之间的关系的图象如图,根据图象回答下列问题:
(1) 小李在途中逗留的时间为___________h,小陆从 A 地到 B 地的速度是________km/h;
(2) 当小李和小陆相遇时,他们离 B 地的路程是____________千米;
(3) 写出小李在逗留之前离 A 地的路程s和行驶时间t之间的函数关系式为_____________________.
【答案】(1)0.5,; (2);(3)
【解析】
试题(1)通过观察图象可得到距离没有发生变化的即为逗留的时间;用路程除以时间即可得出小陆的速度;
(2)根据速度一定,路程与时间成正比即可求解;
(3)如图,求出N点坐标,即可得出M点坐标,从而可求出小李在逗留之前离 A 地的路程s和行驶时间t之间的函数关系式.
试题解析:()1如图所示,
线段MN说明小李在行驶过程中停留的时间为(1-0.5)=0.5小时.
小陆从 A 地到 B 地的速度是20÷(2-0.5)=km/小时.
(2)20-×(1-0.5)=km;
(3)易知N(1, ),所以M(0.5,)
设OM的函数关系式为s=kt
把M(0.5,)代入s=kt得:k=.
∴小李在逗留之前离 A 地的路程s和行驶时间t之间的函数关系式为
练习册系列答案
相关题目