题目内容
【题目】如图,已知正方形 ABCD 的边长为 2,以点 A 为圆心,1 为半径作圆,点 E 是⊙A 上的任意 一点,点 E 绕点 D 按逆时针方向转转 90°,得到点 F,接 AF,则 AF 的最大值是______________
【答案】.
【解析】解:如图,过点A作∠EAB=45°交⊙A于点E,此时旋转后AF最大,过点E作EG⊥AD交DA延长线于G.在Rt△AEG中,AE=1,∠GAE=∠EAB=45°,∴EG=AG=.∵∠ADC=∠EDF,∴∠ADE=∠CDF.在△ADE和△CDF中,,∴△ADE≌△CDF,∴CF=AE=1,∠DCF=∠DAE=∠BAD+∠EAB=90°+45°=135°,∴点C在线段AF上,∴AF=AC+CF.∵AC是边长为2的正方形的对角线,∴AC=2,∴AF=2+1,即:AF的最大值是2+1.故答案为:2+1.
练习册系列答案
相关题目