题目内容

【题目】在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是(  )

A. ①② B. ①②④ C. ②③④ D. ①②③

【答案】B

【解析】利用正方形的性质、全等三角形的性质、勾股定理等知识一一判断即可;

解:①∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠A=∠B=90°,

∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,

∴△AEP≌△DEQ,故①正确,

②作PG⊥CD于G,EM⊥BC于M,

∴∠PGQ=∠EMF=90°,

∵EF⊥PQ,

∴∠PEF=90°,

∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,

∴∠NPE=∠NEF,

∵PG=EM,

∴△EFM≌△PQG,

∴EF=PQ,故②正确,

③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,

则(2+x)2+12=32+x2

∴x=1,故③错误,

④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B时,QC的中点H与D重合,

故EH扫过的面积为△ESD的面积的一半为,故④正确.

故选B.

点睛本题考查了正方形,全等三角形的性质和判定,平行线性质的应用,主要考查学生综合运用性质进行推理的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网