题目内容
如图,设O为△ABC内一点,连接AO、BO、CO,并延长交BC、CA、AB于点D、E、F,已知S△AOB:S△BOC:S△AOC=3:4:6.则
•
•
等于( )
OD |
AO |
OE |
BO |
OF |
CO |
A.
| B.
| C.
| D.
|
∵S△AOB:S△BOC:S△AOC=3:4:6,
∴S△AOB:S△ABC=3:13,S△BOC:S△ABC=4:13,S△AOC:S△ABC=6:13,
∴
=
,
=
,
=
,
∴
=
,
=
,
=
,
∴
•
•
=
×
×
=
.
故选:B.
∴S△AOB:S△ABC=3:13,S△BOC:S△ABC=4:13,S△AOC:S△ABC=6:13,
∴
OF |
CF |
3 |
13 |
OD |
AD |
4 |
13 |
OE |
BE |
6 |
13 |
∴
OF |
CO |
3 |
10 |
OD |
AO |
4 |
9 |
OE |
BO |
6 |
7 |
∴
OD |
AO |
OE |
BO |
OF |
CO |
3 |
10 |
4 |
9 |
6 |
7 |
4 |
35 |
故选:B.
练习册系列答案
相关题目