题目内容
【题目】如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.
(1)求证:AM⊥DM;
(2)若BC=8,求点M到AD的距离.
【答案】(1)证明见解析(2)4
【解析】
(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;
(2)作MN⊥AD,根据角平分线的性质得到BM=MN,MN=CM,即.
(1)∵AB∥CD,
∴∠BAD+∠ADC=180°,
∵AM平分∠BAD,DM平分∠ADC,
∴2∠MAD+2∠ADM=180°,
∴∠MAD+∠ADM=90°,
∴∠AMD=90°,
即AM⊥DM;
(2)过M作MN⊥AD于点N,
∵AB∥CD,∠B=90°,
∴∠C=90°,即BM⊥AB,MC⊥DC,
又∵AM,DM分别平分∠BAD,∠ADC,BC=8,
∴BM=MN,MN=MC,
∴,
∴M到AD的距离为4.
练习册系列答案
相关题目