题目内容

【题目】如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BCy轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为(  )

A. (b+2a,2b) B. (﹣b﹣2c,2b)

C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)

【答案】C

【解析】

CHx轴于H,ACOHF.由CBH∽△BAO,推出,推出BH=﹣2a,CH=2b,推出C(b+2a,2b),由题意可证CHF∽△BOD,可得,推出,推出FH=2c,可得C(﹣b﹣2c,2b),因为2c+2b=﹣2a,推出2b=﹣2a﹣2c,b=﹣a﹣c,可得C(a﹣c,﹣2a﹣2c),由此即可判断;

解:作CHx轴于H,ACOHF.

tanBAC==2,

∵∠CBH+ABH=90°,ABH+OAB=90°,

∴∠CBH=BAO,∵∠CHB=AOB=90°,

∴△CBH∽△BAO,

BH=﹣2a,CH=2b,

C(b+2a,2b),

由题意可证CHF∽△BOD,

FH=2c,

C(﹣b﹣2c,2b),

2c+2b=﹣2a,

2b=﹣2a﹣2c,b=﹣a﹣c,

C(a﹣c,﹣2a﹣2c),

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网