题目内容
【题目】如图,在正方形纸片ABCD中,EF∥AB,M,N是线段EF的两个动点,且MN=EF,若把该正方形纸片卷成一个圆柱,使点A与点B重合,若底面圆的直径为6cm,则正方形纸片上M,N两点间的距离是____________cm.
【答案】
【解析】根据题意得到EF=AD=BC,MN=2EM,由卷成圆柱后底面直径求出周长,除以6得到EM的长,进而确定出MN的长即可.
解:根据题意得:EF=AD=BC,MN=2EM=EF,
∵把该正方形纸片卷成一个圆柱,使点A与点D重合,底面圆的直径为6cm,
∴底面周长为6πcm,即EF=6πcm,
则MN=cm,
故答案为: .
“点睛”此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.
练习册系列答案
相关题目
【题目】某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减(辆) | -1 | +3 | -2 | -4 | +7 | -5 | -10 |
(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总的生产量是多少辆?