题目内容
【题目】如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24厘米,AB=8厘米,BC=30厘米,动点P从A开始沿AD边向D以每秒1厘米的速度运动,动点Q从点C开始沿CB边向B以每秒3厘米的速度运动,P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒.
(1)当t在什么时间范围时,CQ>PD?
(2)存在某一时刻t,使四边形APQB是正方形吗?若存在,求出t值;若不存在,请说明理由.
【答案】
(1)解:∵CQ=3t,PD=24﹣t,
∴由CQ>PD有3t>24﹣t,
解得t>6.
又∵P、Q点的运动时间只能是30÷3=10(s),
∴6<t≤10,即当6<t≤10时,CQ>PD
(2)解:若四边形是正方形,则AP=AB且BQ=AB,
∴1×t=8且30﹣3t=8,
显然无解,即不存在t的值使得四边形APQB是正方形
【解析】(1)先表示出PD,CQ再根据CQ>PD列出方程即可解决问题;
(2)若四边形是正方形,则AP=AB且BQ=AB,则1×t=8且30-3t=8,显然无解,即不存在t的值使得四边形APQB是正方形;
练习册系列答案
相关题目
【题目】列方程组解应用题:
为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:
A | B | |
价格(万元/台) | a | b |
节省的油量(万升/年) | 2.4 | 2 |
经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.
(1)请求出a和b;
(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?