题目内容

【题目】已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.
(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;
(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.

【答案】
(1)

解:BM=DF,BM⊥DF.

理由:∵四边形ABCD、AMEF是正方形,

∴AF=AM,AD=AB,∠FAM=∠DAB=90°,

∴∠FAM﹣∠DAM=∠DAB﹣∠DAM,

即∠FAD=∠MAB,

∵在△FAD和△MAB中,

∴△FAD≌△MAB,

∴BM=DF,∠FDA=∠ABD=45°,

∵∠ADB=45°,

∴∠FDB=45°+45°=90°,

∴BM⊥DF,

即BM=DF,BM⊥DF


(2)

解:BM=DF,BM⊥DF都成立,

理由是:∵四边形ABCD和AMEF均为正方形,

∴AB=AD,AM=AF,∠BAD=∠MAF=90°,

∴∠FAM+∠DAM=∠DAB+∠DAM,

即∠FAD=∠MAB,

∵在△FAD和△MAB中,

∴△FAD≌△MAB,

∴BM=DF,∠ABM=∠ADF,

由正方形ABCD知,∠ABM=∠ADB=45°,

∴∠BDF=∠ADB+∠ADF=90°,

即BM⊥DF,

∴(1)中的结论仍成立


【解析】(1)根据正方形性质求出AF=AM,AD=AB,∠FAM=∠DAB=90°,推出∠FAD=∠MAB,证△FAD≌△MAB,推出BM=DF,∠FDA=∠ABD=45°,求出∠ADB=45°即可;(2)与(1)类似,根据正方形性质,推出∠FAD=∠MAB,判定△FAD≌△MAB,推出BM=DF,∠FDA=∠ABD=45°,求出∠ADB=45°即可.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网