题目内容
【题目】梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是,且,则CD=( )
A.2.5ABB.3ABC.3.5ABD.4AB
【答案】B
【解析】
分别用斜边AD、AB、BC把S1、S2、S3表示出来,然后根据S1+S3=4S2求出AD、AB、BC之间的关系.在过点B作BK∥AD交CD于点K后,根据数据发现△KBC又是一个直角三角形,再次利用勾股定理即可发现CD和AB之间的关系.
解:∵以AD、AB、BC为斜边向外作等腰直角三角形,
其面积分别是S1、S2、S3,
∴,, ,
∵S1+S3=4S2,
∴AD2+BC2=4AB2
过点B作BK∥AD交CD于点K,
∵AB∥CD
∴AB=DK,AD=BK,∠BKC=∠ADC
∵∠ADC+∠BCD=90°
∴∠BKC+∠BCD=90°
∴BK2+BC2=CK2
∴AD2+BC2=CK2
∴CK2=4AB2
∴CK=2AB
∴CD=3AB.
故选:B.
练习册系列答案
相关题目