题目内容

【题目】如图,在△ABC中,点E,F在BC上,EM垂直平分AB交AB于点M,FN垂直平分AC交AC于点N,∠EAF=90°,BC=12,EF=5.

(1)求∠BAC的度数;
(2)求SEAF

【答案】
(1)解:∵EM垂直平分AB,
∴AE=BE,
∴∠B=∠BAE.
∵FN垂直平分AC,
∴AF=EC
∴∠C=∠CAF.
∵∠B+∠BAE+∠EAF+∠C+∠CAF=180°,∠EAF=90°,
∴2∠BAE+2∠CAF=90°,
∴∠BAE+∠CAF=45°,
∴∠BAC=∠BEA+∠EAF+∠CAF=45°+90°=135°

(2)解:∵EM垂直平分AB,
∴EB=EA.
∵FN垂直平分AC,
∴FA=FC.
∵BC=12,EF=5,
∴EA+FA=12﹣5=7.
∵EF=5,∠EAF=90°,
∴EA2+FA2=(EA+FA)2﹣2EAFA=EF2=25,
EAFA=6,
∴SEAF=6
【解析】(1)根据垂直平分线上的点到线段两端点的距离相等,得出AE=BE、AF=EC,证出∠B=∠BAE.∠C=∠CAF,再在△ABC中,利用三角形内角和定理及∠EAF=90°,证出∠BAE+∠CAF=45°,从而可求出∠BAC的度数。
(2)根据AB、EF的长求出BE+FC的长,即可得到EA+FA=7,再根据勾股定理得出EA2+FA2=EF2=25,两式结合求出EAFA的值,再利用三角形的面积公式求出△EAF的面积即可。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网