题目内容
【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.
【答案】
(1)解:直线ON平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON平分∠AOC
(2)10或40
(3)解:∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°
【解析】解:(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠COD=30°,
即旋转60°时ON平分∠AOC,
由题意得,6t=60°或240°,
∴t=10或40;
(1)根据角平分线的定义得出∠MOC=∠MOB,再根据同角的余角相等得出∠COD=∠BON,然后根据对顶角相等及等量代换得出结论。
(2)根据邻补角的定义求出∠AOC的度数,则∠BON=30°,因此旋转60°或240°时ON平分∠AOC,从而得出6t=60°或240°,即可求得t的值。
(3)根据已知易得∠AOC=60°,而∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,再求差即可求得结果。