题目内容

【题目】如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为

【答案】36°或37°
【解析】解:如图,过E作EG∥AB,

∵AB∥CD,

∴GE∥CD,

∴∠BAE=∠AEG,∠DFE=∠GEF,

∴∠AEF=∠BAE+∠DFE,

设∠CEF=x,则∠AEC=2x,

∴x+2x=∠BAE+60°,

∴∠BAE=3x﹣60°,

又∵6°<∠BAE<15°,

∴6°<3x﹣60°<15°,

解得22°<x<25°,

又∵∠DFE是△CEF的外角,∠C的度数为整数,

∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,

所以答案是:36°或37°.

【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网