题目内容
【题目】如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
【答案】(1)证明见解析;(2)3.
【解析】
试题分析:(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;
(2)证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.
在△OBE与△ODF中,∵∠OBE=∠ODF,∠BOE=∠DOF,BE=DF,∴△OBE≌△ODF(AAS),∴BO=DO.
(2)解:∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°,∴AE=GE.∵BD⊥AD,∴∠ADB=∠GDO=90°,∴∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1,由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.
练习册系列答案
相关题目