题目内容
【题目】如图,甲、乙只捕捞船同时从A港出海捕鱼,甲船以每小时15 km的速度沿北偏西60°方向前进,乙船以每小时15 km的速度沿东北方向前进.甲船航行2 h到达C处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B处相遇.问:
(1)甲船从C处出发追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是每小时多少千米?
【答案】(1) 2 h ;(2) 15(1+)千米.
【解析】
(1)根据方向角可以得到∠BCA=45°,∠B=30度,过A作AD⊥BC于点D,在直角△ACD中,根据三角函数就可求得AD的长,再在直角△ABD中,根据三角函数即可求得AB的长,就可求得时间;
(2)求出BC的长,根据(1)中的结果求得时间,即可求得速度.
(1)如图,过A作AD⊥BC于点D.作CG∥AE交AD于点G.
∵乙船沿东北方向前进,
∴∠HAB=45°,
∵∠EAC=30°,
∴∠CAH=90°-30°=60°
∴∠CAB=60°+45°=105°.
∵CG∥EA,∴∠GCA=∠EAC=30°.
∵∠FCD=75°,∴∠BCG=15°,∠BCA=15°+30°=45°,
∴∠B=180°-∠BCA-∠CAB=30°.
在直角△ACD中,∠ACD=45°,AC=2×15=30
.
AD=ACsin45°=30×
30千米.
CD=ACcos45°=30千米.
在直角△ABD中,∠B=30°.
则AB=2AD=60千米.
则甲船从C处追赶上乙船的时间是:60÷15-2=2小时;
(2)BC=CD+BD=30+30千米.
则甲船追赶乙船的速度是每小时(30+30)÷2=15(1+
)千米/小时.
答:甲船从C处追赶上乙船用了2小时,甲船追赶乙船的速度是每小时15(1+)千米.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】随着人们生活质量的提高,越来越多的人们关注运动与健康,近来“微信运动”逐渐被大家关注和喜爱.某兴趣小组为了了解某社区居民的“微信运动”情况,进行了随机抽样调查,对他们一日“微信运动”中的步数进行了统计,下面给出部分信息:
①
| 频数 | 频率 |
5 | ||
10 | 0.2 | |
15 | 0.3 | |
0.2 | ||
8 | 0.16 | |
2 | 0.04 |
这一组的数据为:
6000 6200 6200 6500 6600 6800 7000 7200 7200 7200 7800 8000 8300 8700 8900
根据以上信息,回答下列问题:
(1)本次被调查的居民有__________人:表中______________,
___________;
(2)补全频数分布直方图;
(3)直接写出被调查的居民在“微信运动”中步数的中位数;
(4)本社区约有5000人,用调查样本估计一日步数不低于9000步的人数.