题目内容
【题目】如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC= .
【答案】110°
【解析】解:∵∠BAC=40°, ∴∠ACB+∠ABC=180°﹣40°=140°,
又∵∠ACB=∠ABC,∠ACP=∠CBP,
∴∠PBA=∠PCB,
∴∠ACP+∠ABP=∠PCB+∠PBC=140°× =70°,
∴∠BPC=180°﹣70°=110°.
故答案为110°.
根据∠BAC=40°的条件,求出∠ACB+∠ABC的度数,再根据∠ACB=∠ABC,∠ACP=∠CBP,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.
练习册系列答案
相关题目