题目内容
【题目】甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:
(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;
(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?
【答案】(1)y=20x(0≤x≤30);
(2)乙出发后10分钟追上甲,此时乙所走的路程是200米.
【解析】
试题分析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;
(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.
试题解析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,
∵点C(30,600)在函数y=kx的图象上,
∴600=30k,
解得k=20,
∴y=20x(0≤x≤30);
(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),
由图形可知,点A(8,120),B(20,600)
所以,,解得,所以,y=40x﹣200,
设点D为OC与AB的交点,联立,解得,
故乙出发后10分钟追上甲,此时乙所走的路程是200米.
练习册系列答案
相关题目