题目内容
【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;
(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.
【答案】图形见解析
【解析】试题分析:(1)根据题意所述的旋转三要素,依此找到各点旋转后的对应点,顺次连接可得出△A1B1C;
(2)根据中心对称点平分对应点连线,可找到各点的对应点,顺次连接可得△A2B2C2,结合直角坐标系可得出点C2的坐标.
解:根据旋转中心为点C,旋转方向为顺时针,旋转角度为90°,
所作图形如下:
.
(2)所作图形如下:
结合图形可得点C2坐标为(﹣4,1).
练习册系列答案
相关题目
【题目】随着“西成高铁”的开通,对于加强关中一天水经济区与成渝经济区的交流合作,促进区域经济发展和提高人民出行质量,具有十分重要的意义.成都某单位组织优秀员工利用周末乘坐“西成高铁”到西安观光旅游,计划游览着名景点“大唐芙蓉园”.已知该景区团体票价格设置如下:
人数/人 | 10人以内(含10人) | 超过10人但不超过30人的部分 | 超过30人的部分 |
单价(元/张) | 120 | 100 | 90 |
(1)求团体票总费用y(元)与游览人数x(人)之间的关系式;
(2)若该单位购买团体票共花费4100元,且所有人都购买了门票,那么该单位共有多少人游览了“大唐芙蓉园”?