题目内容
【题目】如图,在中, , , 平分交于点, 于点, 交的延长线于点,连接,给出四个结论:①;②;③;④;其中正确的结论有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】D
【解析】试题解析:如图,
过E作EQ⊥AB于Q,
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ,
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°,
∵EQ⊥AB,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,
∴AB=AQ+BQ=AC+CE,
∴③正确;
作∠ACN=∠BCD,交AD于N,
∵∠CAD=∠CAB=22.5°=∠BAD,
∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD,
∴∠DBC=∠CAD,
在△ACN和△BCD中,
,
∴△ACN≌△BCD,
∴CN=CD,AN=BD,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN,
∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CN=NE,
∴CD=AN=EN=AE,
∵AN=BD,
∴BD=AE,
∴①正确,②正确;
过D作DH⊥AB于H,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA,
∵AE平分∠CAB,DF⊥AC,DH⊥AB,
∴DF=DH,
在△DCF和△DBH中
,
∴△DCF≌△DBH,
∴BH=CF,
由勾股定理得:AF=AH,
∴,
∴AC+AB=2AF,
AC+AB=2AC+2CF,
AB-AC=2CF,
∵AC=CB,
∴AB-CB=2CF,
∴④正确.
故选D
练习册系列答案
相关题目