题目内容

根据条件求值:
①设a=2-
3
,求a2+
1
a2
-2的值.
②设a2+b2-4a-2b+5=0,求
a
+
b
3
a
-2
b
的值.
③已知:
a
+
b
=
3
+
2
ab
=
6
-
3
,求a+b的值.
④已知
25-x2
-
15-x2
=2,求
25-x2
+
15-x2
的值.
分析:①中,显然运用完全平方公式,再代入计算;
②中,首先由配方法确定a和b的值,再代入计算;
③中,注意运用完全平方公式解决.a+b=(
a
+
b
2-2
ab

④中,注意运用平方差公式.
解答:解:①∵a=2-
3
,∴a2+
1
a2
-2=(a-
1
a
2=(2-
3
-
1
2-
3
2=(2-
3
-2-
3
2=12;
②∵a2+b2-4a-2b+5=0,
∴(a-2)2+(b-1)2=0
∴a=2,b=1,
∴原式=
2
+1
3
2
-2
=
8+5
2
14

③∵
a
+
b
=
3
+
2
ab
=
6
-
3

∴a+b=(
a
+
b
2-2
ab
=(
3
+
2
2-2
6
+2
3
=5+2
3

④∵(
25-x2
+
15-x2
)(
25-x2
-
15-x2
)=25-x2-15+x2=10,
又知
25-x2
-
15-x2
=2,
25-x2
+
15-x2
=10÷2=5.
点评:此题中,要求对完全平方公式和平方差公式的变形非常熟悉.同时注意二次根式的一些性质:当a≥0时,a=(
a
)2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网