题目内容
【题目】如图,四边形OABC为直角梯形,已知AB∥OC,BC⊥OC,A点坐标为(3,4),AB=6.
(1)求出直线OA的函数解析式;
(2)求出梯形OABC的周长;
(3)若直线l经过点D(3,0),且直线l将直角梯形OABC的面积分成相等的两部分,试求出直线l的函数解析式.
(4)若直线l经过点D(3,0),且直线l将直角梯形OABC的周长分为5:7两部分,试求出直线l的函数解析式.
【答案】(1)y=x.(2)24.(3)y=x﹣8.(4)y=x﹣2.
【解析】解:(1)设OA的解析式为y=kx,
则3k=4,
∴k=.
∴OA的解析式为y=x.
(2)如图,延长BA交y轴于点D.
∵BA∥OC,
∴AD⊥y轴.且AD=3,OD=4.
∴AO=5,∴DB=3+6=9.
∴OC=9,又BC=OD=4.
∴COABC=OA+AB+BC+OC=5+6+4+9=24.
(3)如图
设点E的坐标为(a,4),
∴AE=a﹣3,
由(2)得AB=6,OC=9,BC=4,
∴S梯形OABC=(AB+OC)×BC=(6+9)×4=30,
∵直线l经过点D(3,0),
∴OD=3,
∵直线l将直角梯形OABC的面积分成相等的两部分,
∴S梯形OAED=S梯形OABC=×30=15,
∴S梯形OAED=(AE+OD)×BC=×(a﹣3+3)×4=15,
∴a=,
∴E(,4),
∵D(3,0),
∴直线解析式为y=x﹣8.
(4)∵COABC=24,故被l分成的两部分分别为10和14.
若l左边部分为10,则s=10﹣3=7,
∴P(5,4).
设PD为:y=mx+n,则,
∴,
∴y=2x﹣6;
若l左边部分为14,则s=14﹣3=11,
∴P(9,4).
∴,
∴,
∴y=x﹣2.
练习册系列答案
相关题目