题目内容

【题目】已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.

(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长.

【答案】
(1)解:如图1,连接FO,

∵F为BC的中点,AO=CO,

∴OF∥AB,

∵AC是⊙O的直径,

∴CE⊥AE,

∵OF∥AB,

∴OF⊥CE,

∴OF所在直线垂直平分CE,

∴FC=FE,OE=OC,

∴∠FEC=∠FCE,∠0EC=∠0CE,

∵∠ACB=90°,

即:∠0CE+∠FCE=90°,

∴∠0EC+∠FEC=90°,

即:∠FEO=90°,

∴FE为⊙O的切线;


(2)解:如图2,

∵⊙O的半径为3,

∴AO=CO=EO=3,

∵∠EAC=60°,OA=OE,
∴△AOE是等边三角形,

∴∠EOA=60°

∴∠COD=∠EOA=60°,

∵在Rt△OCD中,∠COD=60°,OC=3,

∴CD=

∵在Rt△ACD中,∠ACD=90°,

CD= ,AC=6,

∴AD=


【解析】(1)由已知可知,添加辅助线连接FO,易证OF是△ABC的中位线,得到OF∥AB,又有AC是⊙O的直径,证得OF垂直平分EC。根据垂直平分线的性质及等角的余角相等得到∠FEO=90°,从而得到结论。或证△OEF和△OFC,即可得出结论。
(2)根据已知条件易证得△AOE是等边三角形,得出∠COD=∠EOA=60°,在Rt△OCD中求出CD的长,再在Rt△ACD中根据勾股定理求出AD的长即可。
【考点精析】根据题目的已知条件,利用线段垂直平分线的判定和含30度角的直角三角形的相关知识可以得到问题的答案,需要掌握和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网