题目内容
【题目】为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.
(1)甲、乙两个工程队单独完成各需多少天?
(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.
【答案】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天.(1分)
根据题意得:.(3分)
方程两边同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.(5分)
经检验,x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合题意,应舍去.(6分)
∴当x=50时,x+25=75.
答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.(7分)
(2)此问题只要设计出符合条件的一种方案即可.
方案一:由甲工程队单独完成.(8分)
所需费用为:2500×50=125000(元).(10分)
方案二:由甲乙两队合作完成.
所需费用为:(2500+2000)×30=135000(元).(10分)
【解析】
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天.根据题意得:.(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.方案二:由甲乙两队合作完成.
解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天.
根据题意得:.
方程两边同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.
经检验,x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合题意,应舍去.
∴当x=50时,x+25=75.
答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.
(2)此问题只要设计出符合条件的一种方案即可.
方案一:由甲工程队单独完成.
所需费用为:2500×50=125000(元).
方案二:由甲乙两队合作完成.
所需费用为:(2500+2000)×30=135000(元).