题目内容

如图,点M、N分别在正三角形ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求∠AQN的度数.

解:∵BM=CN∴CM=AN,
又∵AB=AC,∠BAN=∠ACM,
∴△AMC≌△BNA,则∠BNA=∠AMC,
∵∠MAN+∠ANB+∠AQN=180°
∠MAN+∠AMC+∠ACB=180°,
∴∠AQN=∠ACB=60°.
分析:根据BM=CN可得CM=AN,易证△AMC≌△BNA,得∠BNA=∠AMC,根据内角和为180°即可求得∠BQM=∠ACB=60°,即可解题.
点评:本题考查了全等三角形的证明和全等三角形对应角相等的性质,考查了等边三角形各内角为60°的性质,本题中求证∠AQN=∠ACB是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网