题目内容
【题目】在横线上填写理由,完成下面的证明. 如图,已知∠1+∠2=180°,∠B=∠3,求证∠C=∠AED
证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°()
∴∠2=∠DFE()
∴AB∥EF()
∴∠3=∠ADE()
又∵∠B=∠3(已知)
∴∠B=∠ADE()
∴DE∥BC()
∴∠C=∠AED()
【答案】邻补角定义;同角的补角相等;内错角相等,两直线平行;两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等.
【解析】证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义), ∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
又∵∠B=∠3(已知),
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行),
∴∠C=∠AED(两直线平行,同位角相等),
所以答案是:邻补角定义,同角的补角相等,内错角相等,两直线平行,两直线平行,内错角相等,等量代换,同位角相等,两直线平行,两直线平行,同位角相等.
【考点精析】关于本题考查的平行线的判定与性质,需要了解由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能得出正确答案.
练习册系列答案
相关题目