题目内容

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求证:PC=PE; (2)求CPE的度数;

拓展探究

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

【答案】(1)、证明过程见解析;(2)、90°;(2)、AP=CE,证明过程见解析.

【解析】

试题分析:(1)、根据正方形得出AB=BC,ABP=CBP=45°,结合PB=PB得出ABP ≌△CBP,从而得出结论;(2)、根据全等得出BAP=BCP,DAP=DCP,根据PA=PE得出DAP=E,即DCP=E,然后根据180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E得出答案;(3)、首先证明ABP和CBP全等,然后得出PA=PC,BAP=BCP,然后得出DCP=E,从而得出CPF=EDF=60°,然后得出EPC是等边三角形,从而得出AP=CE.

试题解析:(1)、在正方形ABCD中,AB=BC,ABP=CBP=45°

ABP和CBP中,又 PB=PB ∴△ABP ≌△CBP(SAS), PA=PC,PA=PE,PC=PE;

(2)、由(1)知,ABP≌△CBP,∴∠BAP=BCP,∴∠DAP=DCP,

PA=PE, ∴∠DAP=E, ∴∠DCP=E, ∵∠CFP=EFD(对顶角相等),

180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, CPF=EDF=90°

(3)、AP=CE

理由是:在正方形ABCD中,AB=BC,ABP=CBP=45°

ABP和CBP中, PB=PB ∴△ABP≌△CBP(SAS), PA=PC,BAP=BCP,

PA=PE,PC=PE,∴∠DAP=DCP, PA=PC ∴∠DAP=E, ∴∠DCP=E

∵∠CFP=EFD(对顶角相等), 180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,

CPF=EDF=180°﹣∠ADC=180°﹣120°=60° ∴△EPC是等边三角形,PC=CE,AP=CE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网