题目内容
【题目】如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )
A.50°
B.51°
C.51.5°
D.52.5°
【答案】D
【解析】解:∵AC=CD=BD=BE,∠A=50°,
∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,
∵∠B+∠DCB=∠CDA=50°,
∴∠B=25°,
∵∠B+∠EDB+∠DEB=180°,
∴∠BDE=∠BED= (180°﹣25°)=77.5°,
∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,
故选D.
根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.
练习册系列答案
相关题目
【题目】为了强化司机的交通安全意识,我市利用交通安全宣传月对司机进行了交通安全知识问卷调查.关于酒驾设计了如下调查问卷:
克服酒驾﹣﹣你认为哪种方式最好?(单选) |
A加大宣传力度,增强司机的守法意识. B在汽车上张贴温馨提示:“请勿酒驾”. C司机上岗前签“拒接酒驾”保证书. D加大检查力度,严厉打击酒驾. E查出酒驾追究一同就餐人的连带责任. |
随机抽取部分问卷,整理并制作了如下统计图:
根据上述信息,解答下列问题:
(1)本次调查的样本容量是多少?
(2)补全条形图,并计算B选项所对应扇形圆心角的度数;
(3)若我市有3000名司机参与本次活动,则支持D选项的司机大约有多少人?