题目内容
【题目】在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h(即),并在离该公路100 m处设置了一个监测点A.在如图的平面直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.
(1)求点B和点C的坐标;
(2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据: ≈1.7)
【答案】见解析
【解析】试题分析:根据方位角的概念,得出∠BAO=60°,∠CAO=45°,由∠BAO=60°可得∠ABO=30°,进而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判断是否超速就是求BC的长,然后比较即可.
解:(1)在Rt△AOB中,
∵∠BAO=60°,∴∠ABO=30°,∴OA=AB.
∵OA=100 m,∴AB=200 m.
由勾股定理,得OB==100 (m).
在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.
∴OC=OA=100 m.∴B(-100,0),C(100,0).
(2)∵BC=BO+CO=(100+100)m, ≈18>,
∴这辆汽车超速了.
练习册系列答案
相关题目