题目内容

【题目】如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足 ,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.
(1)求证:AE⊥DE;
(2)若tan∠CBA= ,AE=3,求AF的长.

【答案】
(1)证明:连接OC,

∵OC=OA,

∴∠BAC=∠OCA,

∴∠BAC=∠EAC,

∴∠EAC=∠OCA,

∴OC∥AE,

∵DE切⊙O于点C,

∴OC⊥DE,

∴AE⊥DE


(2)解:∵AB是⊙O的直径,

∴△ABC是直角三角形,

∵tan∠CBA=

∴∠CBA=60°,

∴∠BAC=∠EAC=30°,

∵△AEC为直角三角形,AE=3,

∴AC=2

连接OF,

∵OF=OA,∠OAF=∠BAC+∠EAC=60°,

∴△OAF为等边三角形,

∴AF=OA= AB,

在Rt△ACB中,AC=2 ,tan∠CBA=

∴BC=2,

∴AB=4,

∴AF=2


【解析】(1)首先连接OC,由OC=OA, ,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA= ,在△ACB中,利用已知条件求得答案.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网