题目内容
【题目】计算:|1﹣3|= .
【答案】2.
【解析】
试题分析:|1﹣3|=|﹣2|=2.故答案为:2.
【题目】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
【题目】2017年扬州马拉松赛事在4月22日开跑,来自世界各地的30000名选手参加了这项国际赛事,将30000用科学记数法表示为 .
【题目】若一个三角形三边之比为3:4:5,又知最长的边比最短的边多4 cm,则最短的边为_______ cm.
【题目】已知10箱苹果,以每箱15千克为标准,超过15的千克数记为正数,不足15的千克数记为负数,称重记录如下:
,,,,,,,,,
(1)求10箱苹果的总重量;
(2)若每箱苹果的重量标准为15±0.5(千克),则这10箱中有几箱不符合标准的?
【题目】标有﹣3,﹣2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为二次函数解析式y=a(x﹣k)2+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为二次函数解析式的b值.
(1)写出k为负数的概率;
(2)求二次函数y=a(x﹣k)2+b的图象上顶点在双曲线y=﹣上的概率.(用树状图或列举法求解)
【题目】【知识背景】在学习计算框图时,可以用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条)
【尝试解决】
(1)①如图1,当输入数x=﹣2时,输出数y=__________;
②如图2,第一个“”内,应填__________; 第二个“”内,应填__________;
(2)①如图3,当输入数x=﹣1时,输出数y=__________;②如图4,当输出的值y=17,则输入的值x=__________;
【实际应用】
(3)为鼓励节约用水,决定对用水实行“阶梯价”:当每月用水量不超过10吨时(含10吨),以3元/吨的价格收费;当每月用水量超过10吨时,超过部分以4元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量x,输出数为水费y.
【题目】已知点P(x+3,x﹣4)在x轴上,则x的值为( )A.3B.﹣3C.﹣4D.4
【题目】已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )
A. 25 B. 7 C. 5和7 D. 25或7