题目内容

【题目】如图1,在中,AB=4,是边上动点(点不与点重合),过点,交边于点.

1)求的大小;

2)若把沿着直线翻折得到,设

如图2,当点落在斜边上时,求的值;

如图3,当点落在外部时,相交于点,如果,写出的函数关系式以及定义域.

【答案】(1) (2) x=1,② ,定义域

【解析】

1)根据正弦的定义求出∠B=30°,根据平行线的性质解答;
2)根据翻转变换的性质,等边三角形的判定定理得到△AQP为等边三角形,根据等边三角形的性质得到AQ=QP,证明AQ=QC,计算即可;
3)作QGABGRHABH,根据正弦的定义用x表示出QG,证明RE=RB,根据等腰三角形的性质得到EH= y,根据正切的定义计算即可.

解:(1) RtABC中,

AB=4,

(2) 如图2,当点落在斜边上时;

由翻折得

是等边三角形

x=1.

如图3,当点落在外部,

QGABGRHABH
QRAB
QG=RH
RtAQG中,QG=AQ×sinA

由翻折的性质可知,∠PRP=CRQ=30°
QRAB
∴∠REB=PRQ
∴∠REB=B
RE=RB
RHAB

RtERH中,

整理得,y=3x
yx的函数关系式为y=3x0x1).

练习册系列答案
相关题目

【题目】请阅读下列材料,并完成相应的任务:

在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABCACBC两边上分别取一点XY,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:

第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点AAZ∥A'Z',交BD于点Z.第四步,过点ZZY∥AC,交BC于点Y,再过点YYX∥ZA,交AC于点X.

则有AX=BY=XY.

下面是该结论的部分证明:

证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,

∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.

同理可得.∴

∵Z'A'=Y'Z',∴ZA=YZ.

在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABCACBC两边上分别取一点XY,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:

第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点AAZ∥A'Z',交BD于点Z.第四步,过点ZZY∥AC,交BC于点Y,再过点YYX∥ZA,交AC于点X.

则有AX=BY=XY.

下面是该结论的部分证明:

证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,

∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.

同理可得.∴

∵Z'A'=Y'Z',∴ZA=YZ.

任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;

(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;

(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是   

A.平移 B.旋转 C.轴对称 D.位似

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网