题目内容

【题目】如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=(

A.90°
B.135°
C.270°
D.315°

【答案】C
【解析】解:∵∠C=90°,
∴∠A+∠B=90°.
∵∠A+∠B+∠1+∠2=360°,
∴∠1+∠2=360°﹣90°=270°.
故选:C.
【考点精析】通过灵活运用三角形的内角和外角和多边形内角与外角,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网