题目内容
【题目】如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.
【答案】2.
【解析】
将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.
将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,
∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,
∵等边△ABC,
∴∠ACP+∠PCB=60°,
∴∠ECB+∠PCB=60°,即∠ECP=60°,
∴△ECP为等边三角形,
∴∠CPE=∠CEP=60°,PE=6,
∴∠DEB=90°,
∵∠APC=150°,∠APD=30°,
∴∠DPC=120°,
∴∠DPE=180°,即D、P、E三点共线,
∴ED=3+7=10,
∴BD==2.
故答案为2.
练习册系列答案
相关题目