题目内容
【题目】已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点
(1) 试求a和b的值
(2) 点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?
(3) 点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.
【答案】(1) a=-3,b=9;(2)每秒5个单位或每秒2个单位;(3) 为定值,理由见解析
【解析】
(1) 根据非负数的和等于零,可得每个非负数同时为零,从而a=-3,b=9;
(2)设C点对应的数为x,CA=x-(-3)=x+3,由于点C存在在B点左侧和右侧两种情况,故CB的长为|x-9|,根据CA=3CB列式即可求出x,从而求得运动速度;
(3设运动时间为t秒,用含t的代数式分别表示PQ、OD、MN,然后代入求值即可判断.
(1) a=-3,b=9
(2) 设3秒后,点C对应的数为x
则CA=|x+3|,CB=|x-9|
∵CA=3CB
∴|x+3|=3|x-9|=|3x-27|
当x+3=3x-27,解得x=15,此时点C的速度为
当x+3+3x-27=0,解得x=6,此时点C的速度为
(3) 设运动的时间为t
点D对应的数为:t
点P对应的数为:-3-5t
点Q对应的数为:9+20t
点M对应的数为:-1.5-2t
点N对应的数为:4.5+10t
则PQ=25t+12,OD=t,MN=12t+6
∴为定值.
故答案为:(1) a=-3,b=9;(2)每秒5个单位或每秒2个单位;(3) 为定值.
【题目】某游泳池有水4000m3 , 先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
时间x(分钟) | … | 10 | 20 | 30 | 40 | … |
水量y(m3) | … | 3750 | 3500 | 3250 | 3000 | … |
(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.