题目内容
如图,D是等边△ABC的边AC上的一点,E是等边△ABC外一点,若BD=CE,∠1=∠2,则对△ADE的形状最准确的是( )
分析:先根据已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,从而推出△ADE是等边三角形.
解答:解:∵三角形ABC为等边三角形,
∴AB=AC,
∵BD=CE,∠1=∠2,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE=60°,
∴△ADE是等边三角形.
故选C.
∴AB=AC,
∵BD=CE,∠1=∠2,
在△ABD和△ACE中,
|
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE=60°,
∴△ADE是等边三角形.
故选C.
点评:本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.
练习册系列答案
相关题目