题目内容
【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是多少?.
(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.
(3)求点P(x,y)在函数y=﹣x+5图象上的概率.
【答案】(1);(2)共12种情况;(3)
【解析】
(1)根据概率公式求解;
(2)利用树状图展示所有12种等可能的结果数;
(3)利用一次函数图象上点的坐标特征得到在函数y=-x+5的图象上的结果数,然后根据概率公式求解.
解:
(1)小红摸出标有数3的小球的概率是;
(2)列表或树状图略:
由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),
(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,
(3)共有12种可能的结果,其中在函数y=x+5的图象上的有4种,即(1,4)(2,3)(3,2)(4,1)
所以点P(x,y)在函数y=x+5图象上的概率==.
练习册系列答案
相关题目