题目内容

【题目】如图,为反比例函数(其中)图象上的一点,在轴正半轴上有一点.连接,且.

1)求的值;

2)过点,交反比例函数(其中)的图象于点,连接于点

①求线段的长;

②求线段的长.

【答案】112;(2)①5;②.

【解析】

1)过点AAHx轴,垂足为点HAHOC于点M,利用等腰三角形的性质可得出OH的长,利用勾股定理可得出AH的长,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)①由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用勾股定理求OC的长;②由OB的长,利用反比例函数图象上点的坐标特征可得出BC的长,利用三角形中位线定理可求出MH的长,进而可得出AM的长,由AM∥BC可得出△ADM∽△BDC,利用相似三角形的性质即可求出的值,从而使问题得解.

解:(1)过点轴,垂足为点于点,如图所示,

的坐标为.

为反比例函数图象上的一点,

.

2①∵轴,,点在反比例函数上,

,则.

②∵

.

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网