题目内容
【题目】如图,点P在∠MAN内,PA平分∠MAN,PB⊥AM于点B,PC⊥AN于点C,点D是射线AM上点B右侧的一个定点.
(1)作经过A,P,D三点的圆;(保留作图痕进,不写作法)
(2)设圆与AN交于点E,∠MAN=60°,PA=4,求AE+AD的值.
【答案】(1)见解析;(2)4
【解析】
(1)作AP和AD的垂直平分线,两条直线的交点即为过A、P、D三点的圆心;
(2)连接PE、PD证明△PCE与△PBD全等即可求解.
解:(1)如图所示:
作AP和AD的垂直平分线,两条线相交于点O,
以点为圆心,OA为半径的圆即为所求作的图形;
(2)连接PE、PD,
∵PA平分∠MAN,PB⊥AD于点B,PC⊥AN于点C,
∴PB=PC,
在圆中,∵∠EAP=∠DAP,
∴PE=PD,
在△PCE和△PBD中,
∵∠PCE=∠PBD=90°,PB=PC,PE=PD.
∴Rt△PCE≌Rt△PBD(HL).
∴CE=BD.
∵∠MAN=60°,PA平分∠MAN,
∴∠PAB=30°,PA=4,
∴AB=2,
∴AE+AD=2AB=4.
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);并求出售价为多少元时获得最大利润,最大利润是多少?
【题目】重庆,别称“山城”、“雾都”,旅游资源丰富,自然人文旅游景点独具特点.近年来,重庆以其独特“3D魔幻”般的城市魅力吸引了众多海内外游客,成为名副其实的旅游打卡网红城市.某中学想了解该校九年级1200名学生对重庆自然人文旅游景点的了解情况,从九(1)、九(2)班分别抽取了30名同学进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:
a.测试成绩分成5组,其中A组:50<x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E组:90<x≤100.测试成绩统计图如下:
b.九(2)班D组的测试成绩分别是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.
c.九(1)(2)班测试成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
九(1) | 84.2 | 84 | 89 |
九(2) | 84.6 | π | 90 |
根据以上信息,回答下列问题:
(1)根据题意,直接写出m,n的值:m= ,n= ;九(2)班测试成绩扇形统计图中A组的圆心角α= °;
(2)在此次测试中,你认为 班的学生对重庆自然人文景点更了解(填“九(1)”或“九(2)”),请说明理由(一条理由即可): ;
(3)假设该校九年级学生都参加此次测试,测试成绩大于90分为优秀,请估计该校九年级对重庆自然人文景点的了解达到优秀的人数.