题目内容

【题目】如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点O.

(1)求证:AD=AE;
(2)试猜想:OA与BC的位置关系,并加以证明.

【答案】
(1)证明:∵CD⊥AB,BE⊥AC,

∴∠ADC=∠AEB=90°,

△ACD和△ABE中,

∴△ACD≌△ABE(AAS),

∴AD=AE


(2)猜想:OA⊥BC.

证明:连接OA、BC,

∵CD⊥AB,BE⊥AC,

∴∠ADC=∠AEB=90°.

在Rt△ADO和Rt△AEO中,

∴Rt△ADO≌Rt△AEO(HL).

∴∠DAO=∠EAO,

又∵AB=AC,

∴OA⊥BC.


【解析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网