题目内容
【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,PF∥BC交AB于F,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长始终保持不变,试求出ED的长度.
【答案】(1)2;(2)3.
【解析】
试题分析:(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=
(6+x),求出x的值即可;
(2)作QG⊥AB,交直线AB于点G,连接QE,PG,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQG,再由AE=BG,PE=QG且PE∥QG,可知四边形PEQG是平行四边形,进而可得出EB+AE=BE+BG=AB,DE=AB,由等边△ABC的边长为6,可得出DE=3.
试题解析:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=
(6+x),解得x=2,∴AP=2;(2)作QG⊥AB,交直线AB于点G,连接QE,PG,又∵PE⊥AB于E,∴∠DGQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠GBQ=60°,在△APE和△BQG中,∵∠AEP=∠BGQ=90°,
,∴△APE≌△BQG(AAS),∴AE=BG,PE=QG且PE∥QG,∴四边形PEQG是平行四边形,∴DE=
EG,∵EB+AE=BE+BG=AB=EG,∴DE=
AB,又∵等边△ABC的边长为6,∴DE=3,故运动过程中线段ED的长始终为3.
![](http://thumb.zyjl.cn/images/loading.gif)