题目内容
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,D为AC中点,过点A作AE∥BC,连结BE,∠EBD=∠CBD,BD=5,则BE的长为________.
【答案】
【解析】
连接ED并延长交BC于点F,由AE//BC及点D是AC的中点,可证明△ADE≌△CDF,得AE=CF,DE=DF,结合∠EBD=∠CBD,可猜想BF=BE,则BE+AE=BC=8,在Rt△ABE中,由勾股定理构造关于BE的方程解答即可.
如图,连接ED并延长交BC于点F,过点D分别作DP⊥BE,垂足为P;作DQ⊥BC,垂足为Q,
在Rt△ABC中,∵D是斜边AC的中点,
∴AD=CD=BD=5,AC=2BD=10,
∴,
∵AE//BC,
∴∠EAD=∠FCD,∠AED=∠CFD,
又∵AD=CD,
∴△ADE≌△CDF,
∴DE=DF,AE=CF,
又∵∠EBD=∠CBD, DP⊥BE, DQ⊥BC,
∴DP=DQ,
又∵BD=BD,DE=DF,
∴Rt△BDP≌Rt△BDQ(HL),Rt△PDE≌Rt△QDF(HL),
∴BP=BQ,PE=QF,
∴BF=BE,
∴BE+AE=BF+CF=BC=8,
设BE=x,则AE=8-x,
在Rt△ABE中,
由勾股定理得
得(8-x)2+62=x2,
解得x=,
即BE= .
故答案为:
练习册系列答案
相关题目