题目内容
如图,梯形ABCD中AD∥BC,对角线AC、BD相交于点O,若AO:CO=2:3,AD=4,则BC等于
- A.12
- B.8
- C.7
- D.6
D
分析:先根据相似三角形的判定定理得出△AOD∽△COB,再由相似三角形的对应边成比例即可得出BC的长.
解答:∵梯形ABCD中AD∥BC,
∴∠ADO=∠OBC,∠AOD=∠BOC,
∴△AOD∽△COB,
∵AO:CO=2:3,AD=4,
∴==,=,
解得BC=6.
故选D.
点评:本题考查的是相似三角形的判定与性质,先根据相似三角形的判定定理得出△AOD∽△COB是解答此题的关键.
分析:先根据相似三角形的判定定理得出△AOD∽△COB,再由相似三角形的对应边成比例即可得出BC的长.
解答:∵梯形ABCD中AD∥BC,
∴∠ADO=∠OBC,∠AOD=∠BOC,
∴△AOD∽△COB,
∵AO:CO=2:3,AD=4,
∴==,=,
解得BC=6.
故选D.
点评:本题考查的是相似三角形的判定与性质,先根据相似三角形的判定定理得出△AOD∽△COB是解答此题的关键.
练习册系列答案
相关题目
已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为( )
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|