题目内容

【题目】如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为(

A.1 B.2 C.3 D.4

【答案】B.

【解析】

试题解析:由图知:当点B的横坐标为1时,抛物线顶点取C(-1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:

0=a(1+1)2+4,a=-1,

即:B点横坐标取最小值时,抛物线的解析式为:y=-(x+1)2+4.

当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),即与x轴的交点为(2,0)或(4,0)(舍去),

∴点A的横坐标的最大值为2.

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网