题目内容
【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为( )
A.10
B.12
C.16
D.18
【答案】D
【解析】解:如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF= BF=6,
∴OA= = =8,
∴AE=2OA=16;
故选:D.
先证明四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF= BF=6,由勾股定理求出OA,即可得出AE的长
练习册系列答案
相关题目