题目内容
【题目】AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.
(1)求证:CE是⊙O的切线;
(2)若BC=BE,判定四边形OBCD的形状,并说明理由.
【答案】(1)证明见解析;(2)四边形OBCD是菱形,理由见解析.
【解析】
(1)证明∠OCE=90°问题可解;
(2)由同角的余角相等,可得∠BCO=∠BOC,再得到△BCO是等边三角形,故∠AOC=120°,再由垂径定理得到AF=CF,推出△COD是等边三角形问题可解.
(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,
∵OC=OA,
∴∠A=∠ACO,
∴∠A+∠BCO=90°,
∵∠A=∠BCE,
∴∠BCE+∠BCO=90°,
∴∠OCE=90°,
∴CE是⊙O的切线;
(2)解:四边形OBCD是菱形,
理由:∵BC=BE,
∴∠E=∠ECB,
∵∠BCO+∠BCE=∠COB+∠E=90°,
∴∠BCO=∠BOC,
∴BC=OB,
∴△BCO是等边三角形,
∴∠AOC=120°,
∵F是AC的中点,
∴AF=CF,
∵OA=OC,
∴∠AOD=∠COD=60°,
∵OD=OC,
∴△COD是等边三角形,
∴CD=OD=OB=BC,
∴四边形OBCD是菱形.
练习册系列答案
相关题目